24 research outputs found

    Protecting Cyber Physical Systems Using a Learned MAPE-K Model

    Get PDF

    An Optimization Model for Appraising Intrusion-Detection Systems for Network Security Communications:Applications, Challenges, and Solutions

    Get PDF
    Cyber-attacks are getting increasingly complex, and as a result, the functional concerns of intrusion-detection systems (IDSs) are becoming increasingly difficult to resolve. The credibility of security services, such as privacy preservation, authenticity, and accessibility, may be jeopardized if breaches are not detected. Different organizations currently utilize a variety of tactics, strategies, and technology to protect the systems’ credibility in order to combat these dangers. Safeguarding approaches include establishing rules and procedures, developing user awareness, deploying firewall and verification systems, regulating system access, and forming computer-issue management groups. The effectiveness of intrusion-detection systems is not sufficiently recognized. IDS is used in businesses to examine possibly harmful tendencies occurring in technological environments. Determining an effective IDS is a complex task for organizations that require consideration of many key criteria and their sub-aspects. To deal with these multiple and interrelated criteria and their sub-aspects, a multi-criteria decision-making (MCMD) approach was applied. These criteria and their sub-aspects can also include some ambiguity and uncertainty, and thus they were treated using q-rung orthopair fuzzy sets (q-ROFS) and q-rung orthopair fuzzy numbers (q-ROFNs). Additionally, the problem of combining expert and specialist opinions was dealt with using the q-rung orthopair fuzzy weighted geometric (q-ROFWG). Initially, the entropy method was applied to assess the priorities of the key criteria and their sub-aspects. Then, the combined compromised solution (CoCoSo) method was applied to evaluate six IDSs according to their effectiveness and reliability. Afterward, comparative and sensitivity analyses were performed to confirm the stability, reliability, and performance of the proposed approach. The findings indicate that most of the IDSs appear to be systems with high potential. According to the results, Suricata is the best IDS that relies on multi-threading performance

    An Improved Binary Grey-Wolf Optimizer with Simulated Annealing for Feature Selection

    Get PDF
    This paper proposes improvements to the binary grey-wolf optimizer (BGWO) to solve the feature selection (FS) problem associated with high data dimensionality, irrelevant, noisy, and redundant data that will then allow machine learning algorithms to attain better classification/clustering accuracy in less training time. We propose three variants of BGWO in addition to the standard variant, applying different transfer functions to tackle the FS problem. Because BGWO generates continuous values and FS needs discrete values, a number of V-shaped, S-shaped, and U-shaped transfer functions were investigated for incorporation with BGWO to convert their continuous values to binary. After investigation, we note that the performance of BGWO is affected by the selection of the transfer function. Then, in the first variant, we look to reduce the local minima problem by integrating an exploration capability to update the position of the grey wolf randomly within the search space with a certain probability; this variant was abbreviated as IBGWO. Consequently, a novel mutation strategy is proposed to select a number of the worst grey wolves in the population which are updated toward the best solution and randomly within the search space based on a certain probability to determine if the update is either toward the best or randomly. The number of the worst grey wolf selected by this strategy is linearly increased with the iteration. Finally, this strategy is combined with IBGWO to produce the second variant of BGWO that was abbreviated as LIBGWO. In the last variant, simulated annealing (SA) was integrated with LIBGWO to search around the best-so-far solution at the end of each iteration in order to identify better solutions. The performance of the proposed variants was validated on 32 datasets taken from the UCI repository and compared with six wrapper feature selection methods. The experiments show the superiority of the proposed improved variants in producing better classification accuracy than the other selected wrapper feature selection algorithms

    A three-tier SDN architecture for DenseNets

    No full text

    Mobility Management in Three-Tier SDN Architecture for DenseNets

    No full text

    A heterogeneous software defined networking architecture for the tactical edge

    No full text

    Traffic offloading for 5G:L-LTE or Wi-Fi

    No full text

    An Online Model to Minimize Energy Consumption of IoT Sensors in Smart Cities

    No full text
    corecore